Demos \& Schedule

*Bolded times are scheduled demos.

1 - Fast autonomous UAV flight in GPS-denied conditions (:00, :30)
General Robotics, Automation, Sensing \& Perception Lab

2 - Maneuverable Piccolissimo 2 (:15, :45)

3 - Decentralized Planning with Shared Semantic Representation for Multiple Robots (:00, :30)
4 - Soft Hybrid Aerial Vehicle via Bistable Mechanism
5 - Kod*lab Legged Robot Demos - May 23 only
6 - Self-Assembling Modular Robot for Extreme Shapeshifting (SMORES-EP)
7 - Building Dynamics Models through Contact Discontinuities
8 - Model Zoo: A Growing "Brain" That Learns Continuously
A Model for Perimeter-Defense Problems with Heterogeneous Teams
9- Reactive Motion Policy Learning: A Dynamical Systems Approach
10 - Analysis of a Flock of Visually Similar Birds in an Outdoor Aviar
11 - CMOS Integrated, Sub-1mm Robots
12 - Quori: A Community-Informed Design of a Socially Interactive Humanoid Robot (:00, :15, :30, :45)
13 - Reconstructing 3D Humans from Images
14 - Lifelong Learning of Occupancy Grid Prediction
15 - Event Based Cameras
16 - Safety-critical Learning, Optimization, and Control
17 - Variable Topology Truss
18 - Cassie Locomotion Controllers
19 - Multi-robot Air-ground Collaborative Semantic Mapping and Localization (:15, :45)
20 - Autoware Autonomous Go-Kart (:00, :30)
21 - ScaLAR Lab Demos (:00, :15,:30, :45)
22 - Origami-inspired Robot that Swims via Jet Propulsion
23 - Know Thyself: Transferable Visual Control Policies through Robot-Awareness
24 - Building with Found Material

Industry Spinoffs \& Friends

A - Treeswift
B - IQ Motion Control - May 23 only
C - Exyn Technologies - May 23 only
D - Pennovation Works
E - LF Intelligence
F - Ghost Robotics - May 23 only

PENNOVATION WORKS

Thank you for visiting the GRASP Lab!

GRASP LAB TECHNICAL TOURS

May 23 \& 27, 2022

Make sure to check out our website \& add us on social media.
https://www.grasp.upenn.edu/

> PERCH $\left(\mathbf{3}^{\text {rd }}\right.$ floor $)$

"Find Out About"
Mapping and localization: $1,14,19,20, \mathrm{~A}, \mathrm{C}, \mathrm{E}$
Design and fabrication: 4, 6, 11, 17, 24, B
Learning-based control: 7, 8, 9, 16, 23
Computer vision: 10, 13, 15, 23
Human-robot interaction: 9, 12, 13

Aerial vehicles: 1, 2, 3, 4, 19, A, B, C
Legged locomotion: 5, 18, F
Manipulation: 7, 9, 23, 24
Swimming robots: 21, 22

Pennovation
Campus

䧲Penn
UCLA

A Soft Hybrid Aerial Vehicle via Bistable Mechanism

J. Weakly*, X. Li*, M. Li, T. Agarwal, S. Ho, C. Jiang, C. Sung

The Soft Hybrid Aerial Vehicle uses a bistable mechanism to switch between a quadrotor mode and a fixed wing mode. When the robo accelerates through a hand-designed flight maneuver, the vehicle transitions and folds or unfolds the origami wings
https://sung.seas.upenn.edu, jmcw@seas.upenn.edu

8	
	odel Zoo: A Growing "Brain" That Learns Continually

Rahul Ramesh, Pratik Chaudhari

We show that machine learning models benefit from splitting the learning capacity, when tackling multiple tasks. To this end, we propose Model Zoo: an algorithm inspired by boosting that identifies synergistic sets of tasks.

8

A Model for Perimeter-Defense Problems with Heterogeneous Teams Christopher D. Hsu, Mulugeta A. Haile, and Pratik Chaudhari

Reactive Motion Policy Learning: A Dynamical Systems Approach

N. Figueroa* and A. Billard

By defining a motion policy as a dynamical system (DS) with stability and convergence perturbations and changes in the task imposed by a human operator Such DS-based motion policies can be learned from a small set of demonstrations (<5) thanks to a physically consistent trajectory learning scheme.
https://nbfiqueroa.github.io/ nadiafig@seas.upenn.edu

Analysis of a Flock of Visually

 Similar Birds in an Outdoor AviaryMarc Badger, Shiting Xiao, Yufu Wang, Bernd Pfrommer, Marc Schmidt, and Kostas Daniilidis

At the UPenn Aviary we study bird behavio with computer vision and machine learning methods. In this work we capture detailed interactions among individuals in a social group which is foundational to our study of animal behavior and neuroscience.
https://aviary.sas.upenn.edu/

CMOS integrated, sub- 1 mm robots

Maya Lassiter ${ }^{1,2,}$ Li Xu ${ }^{3}$, Jungho Lee ${ }^{3}$, Will Reinhardt $1^{1,2}$, Lucas Hanson ${ }^{1,4}$, David Kawaminamis ${ }^{5}$, Xiao Wu^{3}, Yejoong Kim^{3}, Makoto Yasuda ${ }^{5}$, Masaru

On this table, you can find one of our robots under a microscope. The machine is too small to see with the naked eye, but contains solar cells for power [a], integrated legs [b] temperature sensors [c], electric field sensors [d], an optical communication system [e] and a microprocessor with programable memory [f].
mmiskin@seas.upenn.edu, mayala@seas.upenn.edu

Quori: A Community-Informed Design of a Socially Interactive Humanoid Robot
Andrew Specian ${ }^{1}$ 1: Rossiversty of Pennsylvania, 2: Semio, 3 : University of southerm Caltioninia ${ }^{2}$ and Mark Yim ${ }^{1}$

OPPenn \mid GRASP

Event Based Cameras

Kenneth Chaney, Claude Wang, Fernando Cladera, Anthony Bisulco, CJ Taylor, and Kostas Daniilidis

Event based cameras are nove asynchronous sensors that provide a wide array of benefits in the field of robotics and computer vision. Here we show demos relating to these advantages.

14 舞

Lifelong Learning of

 Occupancy Grid PredictionG. Georgakis, M. Hussing, D. Kent, S. Lee, K. Schmeckpeper, S. Shaji, K. Vedder, K. Daniilidis, E. Eaton

Occupancy map prediction aims to capture layout priors in
indoor environments by learning to predict occupancy indoor environments by learning to predict occupancy
information outside the field-of-view of the agent. This allows agents to anticipate obstacles in novel environments. We axtend our prediction algocorithm to a lifelongronmerning setting,
edemonstrating a service robot capable of updating its demonstrating a service robot capable of updating its
prediction module to handle changing environments over a prediction module to ha
long-term deployment.
https://ggeorgak11.github.io/uncertainty-nav-project// https://lifelongml.seas.upenn.edu/

Variable Topology Truss

A. Spinos, J. Bae, D. Carroll, C. Liu, T. Kientz, S. Park, E. Park, S. Lee, T. Tsabedze, D. Edgar,
A. Ren, E. Skorniakova, F. Collins, T. Seo, J. Kim, F. C. Park, M. Yim.

Variable Topology Trusses (VTT) are modular, selfreconfigurable, parallel robots that consist of high-extension-ratio linear actuators connected by reconfigurable spherical joints. The concept was originally developed to shore damaged buildings in disaster zones.
https://www.modlabupenn.org/variable-topology-truss/
spinos@seas.upenn.edu, jhbae@seas.upenn.edu

Cassie Locomotion Controllers

William Yang, Yu-Ming Chen, Brian Acosta, Michael Posa

We will demonstrate recent results for dynamic we wilk and running on the Cassits for dynamic Approaches use impact-invariant control[1] to mitigate uncertainty when landing on the ground and optimal reduced order models[2] for highperformance, real-time planning

Multi-Robot Air-Ground Collaborative Semantic Mapping and Localization
I. Miller, F. Cladera, CJ Taylor, V. Kumar

Our ground robots localize themselves in a semantic map built by aerial robots or satellite images. They execute GPS waypoint mission without using GPS, including detecting and georeferencing objects. Data is transmitted ack to the basestation and to other robots hrough a distributed database.
https://www.kumarrobotics.org, iandm@seas.upenn.edu

20		sptentrio

Autoware Autonomous Go-Kart
 R. Mangharam, T. Nagy, M. Endler, A. Zhu, B. Acosta, R. Udayagiri, A. Alavi, S. Agarwal, W. C Francis, A. Prabhu, S. Gupta

A custom autonomous vehicle for the evGrand Prix 2022 competition. It can race on an optimized raceline and avoid
dynamic obstacles. It is a complete AV platform that can be used for further AV research.
It is equipped with a custom-built Drive-by-Wire solution and sensor mounting. The sensors include LiDAR, 9-axis IMU,
RGB camera, and Septentrio mosaic-H GNSS receiver.
Autoware.org, Rahul Mangharam rahulm@seas.upenn.edu

Origami-inspired robot that swims via jet-propulsion

D. Chen, Z. Yang, S. Panchanadam, B. Baraki, G. Chen, C. Sung

The robot leverages an origami-inspired skin that can change its body shape to ingest and expel water, creating a jet that propels it underwater, the robot can move forward at $6.7 \mathrm{~cm} / \mathrm{s}(0.2$ body length $/ \mathrm{s})$, with a cost of transport of 2.0 .
https://sung.seas.upenn.edu/, dschen@seas.upenn.edu

$$
23
$$

Mann IGRASP

```
21
```


Collective Swimming Using Modboats
G. Knizhnik, T. Z. Jiahao, M. Yim, M. A. Hsieh

Know Thyself: Transferable Visual Control Policies through Robot-Awareness

Edward Hu, Kun Huang, Oleh Rybkin, Dinesh Jayaraman

21
舞Penn \qquad $\underset{\text { GRabrar }}{\text { GR }}$
Environmental Monitoring and Adaptive Sampling using Heterogeneous Robot Teams

Forest fires, oil spills, motions of human and animal crowds exhibit complex patterns across various spatiotemporal scales. Heterogeneous robot teams are better at sampling and fusing multiresolution data needed to model and track these multiscale dynamic processes
The Scalable Autonomous Robot Lab (Hsieh et al.) https://scalar.seas.upenn.edu
\qquad
\mid GRASP

MoD LAB

Robust Robotic Solutions:

 Building with Found MaterialD. Carroll, M. Yim

Made from tree branches, this arm demonstrates the ability to accurately design and build with found material. Envisioned for deployment in low ncome regions where access to and maintenance hese materials into existing robensive, recycling engineer robust, cost-effective robotic syste

