*This was a HYBRID Event with in-person attendance in Levine 307 and Virtual attendance…
ABSTRACT
With the maturing of AI and multiagent systems research, we have a tremendous opportunity to direct these advances towards addressing complex societal problems. I will focus on domains of public health and conservation, and address one key cross-cutting challenge: how to effectively deploy our limited intervention resources in these problem domains. I will present results from work around the globe in using AI for challenges in public health such as Maternal and Child care interventions, HIV prevention, and in conservation such as endangered wildlife protection. Achieving social impact in these domains often requires methodological advances. To that end, I will highlight key research advances in multiagent reasoning and learning, in particular in, restless multiarmed bandits, influence maximization in social networks, computational game theory and decision-focused learning. In pushing this research agenda, our ultimate goal is to facilitate local communities and non-profits to directly benefit from advances in AI tools and techniques.