ABSTRACT
The animal kingdom is full of both human and non-human animals worthy of investigation, emulation and re-creation. As such, my research group has created a comprehensive research program focusing on biologically-inspired robots, and has applied them to search and rescue, minimally invasive surgery, and manufacturing. These robots inspire great scientific challenges in mechanism design, control, planning and estimation theory. These research topics are important because once the robot is built (design), it must decide where to go (path planning), determine how to get there (control), and use feedback to close the loop (estimation). A common theme to these research foci is devising ways by which we can reduce multi-dimensional problems to low dimensional ones for planning, analysis, and optimization. In this talk, I will discuss our results in geometric mechanics, Bayesian filtering, and scalable multi-agent planning to support these reductions. This talk will also cover how my students and I commercialized these technologies by founding three companies: Medrobotics, Hebi Robotics, and Bito Robotics. In 2015, the surgical snake robot from Medrobotics cleared the FDA and has begun to democratize the delivery of medical care in the US and Europe If time permits, I will also discuss my educational activities, especially at the undergraduate level, with a course using LEGO robots, and the role of entrepreneurism in University education.